Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Transportation research record ; 2677(4):335-349, 2022.
Article in English | EuropePMC | ID: covidwho-2313960

ABSTRACT

Aspirations to slow down the spread of novel Coronavirus (COVID-19) resulted in unprecedented restrictions on personal and work-related travels in various nations across the globe in 2020. As a consequence, economic activities within and across the countries were almost halted. As restrictions loosen and cities start to resume public and private transport to revamp the economy, it becomes critical to assess the commuters' travel-related risk in light of the ongoing pandemic. The paper develops a generalizable quantitative framework to evaluate the commute-related risk arising from inter-district and intra-district travel by combining nonparametric data envelopment analysis for vulnerability assessment with transportation network analysis. It demonstrates the application of the proposed model for establishing travel corridors within and across Gujarat and Maharashtra, two Indian states that have reported many COVID-19 cases since early April 2020. The findings suggest that establishing travel corridors between a pair of districts solely based on the health vulnerability indices of the origin and destination discards the en-route travel risks from the prevalent pandemic, underestimating the threat. For example, while the resultant of social and health vulnerabilities of Narmada and Vadodara districts is relatively moderate, the en-route travel risk exacerbates the overall travel risk of travel between them. The study provides a quantitative framework to identify the alternate path with the least risk and hence establish low-risk travel corridors within and across states while accounting for social and health vulnerabilities in addition to transit-time related risks.

2.
Transp Res Rec ; 2677(4): 335-349, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2313961

ABSTRACT

Aspirations to slow down the spread of novel Coronavirus (COVID-19) resulted in unprecedented restrictions on personal and work-related travels in various nations across the globe in 2020. As a consequence, economic activities within and across the countries were almost halted. As restrictions loosen and cities start to resume public and private transport to revamp the economy, it becomes critical to assess the commuters' travel-related risk in light of the ongoing pandemic. The paper develops a generalizable quantitative framework to evaluate the commute-related risk arising from inter-district and intra-district travel by combining nonparametric data envelopment analysis for vulnerability assessment with transportation network analysis. It demonstrates the application of the proposed model for establishing travel corridors within and across Gujarat and Maharashtra, two Indian states that have reported many COVID-19 cases since early April 2020. The findings suggest that establishing travel corridors between a pair of districts solely based on the health vulnerability indices of the origin and destination discards the en-route travel risks from the prevalent pandemic, underestimating the threat. For example, while the resultant of social and health vulnerabilities of Narmada and Vadodara districts is relatively moderate, the en-route travel risk exacerbates the overall travel risk of travel between them. The study provides a quantitative framework to identify the alternate path with the least risk and hence establish low-risk travel corridors within and across states while accounting for social and health vulnerabilities in addition to transit-time related risks.

3.
Appl Netw Sci ; 6(1): 4, 2021.
Article in English | MEDLINE | ID: covidwho-1025266

ABSTRACT

BACKGROUND: The dense social contact networks and high mobility in congested urban areas facilitate the rapid transmission of infectious diseases. Typical mechanistic epidemiological models are either based on uniform mixing with ad-hoc contact processes or need real-time or archived population mobility data to simulate the social networks. However, the rapid and global transmission of the novel coronavirus (SARS-CoV-2) has led to unprecedented lockdowns at global and regional scales, leaving the archived datasets to limited use. FINDINGS: While it is often hypothesized that population density is a significant driver in disease propagation, the disparate disease trajectories and infection rates exhibited by the different cities with comparable densities require a high-resolution description of the disease and its drivers. In this study, we explore the impact of creation of containment zones on travel patterns within the city. Further, we use a dynamical network-based infectious disease model to understand the key drivers of disease spread at sub-kilometer scales demonstrated in the city of Ahmedabad, India, which has been classified as a SARS-CoV-2 hotspot. We find that in addition to the contact network and population density, road connectivity patterns and ease of transit are strongly correlated with the rate of transmission of the disease. Given the limited access to real-time traffic data during lockdowns, we generate road connectivity networks using open-source imageries and travel patterns from open-source surveys and government reports. Within the proposed framework, we then analyze the relative merits of social distancing, enforced lockdowns, and enhanced testing and quarantining mitigating the disease spread. SCOPE: Our results suggest that the declaration of micro-containment zones within the city with high road network density combined with enhanced testing can help in containing the outbreaks until clinical interventions become available.

SELECTION OF CITATIONS
SEARCH DETAIL